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The effect of small surface perturbations on the 
pulsatile boundary layer on a semi-infinite flat plate 
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(Received 6 March 1986 and in revised form 11 March 1988) 

The laminar pulsatile flow over a semi-infinite flat plate, on which is located a small 
(steady) surface distortion is investigated ; triple-deck theory provides the basis for 
the study. The problem is of direct relevance to the externally imposed acoustic 
excitation of boundary layers. The investigation is primarily numerical and involves 
the solution of the nonlinear, unsteady boundary-layer equations which arise from 
the lower deck. The numerical method involves the use of finite differencing in the 
transverse direction, Crank-Nicolson marching in time, and Fourier transforms in 
the streamwise direction, and as such is an extension of the spectral method of 
Burggraf & Duck (1982). Supersonic and incompressible flows are studied. A number 
of the computations presented suggest that the small surface distortion can excite a 
large-wavenumber, rapidly growing instability, leading to a breakdown of the 
solution, with the wall shear a t  a point seeming to increase without bound as a finite 
time is approached. Rayleigh modes for the basic (undisturbed) velocity profile are 
computed and there is some correlation between the existence and magnitude of the 
growth rate of these unstable modes, and the occurrence of the apparent singularity. 
Streamline plots indicate that this phenomenon is linked to the formation of closed 
(or ‘cats-eye’) eddies in the main body of the boundary layer, away from the wall. 
Tollmien-Schlichting instabilities are clearly seen in the case of incompressible 
flows. 

1. Introduction 
The problem investigated is that of pulsatile flow past a semi-infinite flat plate on 

which is situated a small distortion, distance L from the leading edge. The free- 
stream velocity is taken to be U,(1 + A  sinQt*, 0), (with U, constant), referred to 
Cartesian coordinates (x*, y*) = L(x+ 1 ,  y), origin a t  the leading edge, with the 
undistorted plate lying along y* = 0. The general velocity vector is then taken as 
U , ( u ,  v), where it is assumed there is no velocity (or solution variation) in the cross- 
flow ( z * )  direction. The kinematic viscosity of the fluid in the free stream is vo, and 
non-dimensional time t = Qt*.  The problem, as stated, involves three non- 
dimensional parameters, namely a frequency parameter 

P o  = (2)i 
(Po --f O representing increasingly faster oscillations, Po + 00 representing increasingly 
slower oscillations), a Reynolds number 
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which is assumed large throughout this paper, and finally the oscillation amplitude 
parameter A. When considering the so-called triple-deck problem, it is convenient to 
introduce a small parameter 6 ,  related to the Reynolds number by 

e = R-k. (1.3) 

The basic flow (i.e. the flow without the inclusion of the distortion) itself is of much 
interest, most of the work on this being for the incompressible case with h @ 1 (i.e. 
a small oscillatory component). The various phases of the flow (for the incompressible 
case) are clearly identified by Goldstein (1983) (see in particular his figure 1 ) .  The first 
is of streamwise dimension O(Uw c/Q), centred around the leading edge (where 
c= (vo a/U",i), and is a region in which the full Navier-Stokes equations apply. The 
second region, a t  a distance O(Uw/Q) from the leading edge is perhaps the most 
studied region, with the flow governed by the unsteady boundary-layer equations. 
This has been investigated by Lighthill (1954), Lam & Rott (1960) and Ackerberg & 
Phillips (1972). Downstream the solution develops a double structure : to leading 
order the inner layer is a Stokes' layer, whilst the outer layer is a Blasius motion. 
Ackerberg & Phillips (1972) and Goldstein, Pockol & Sanz (1983) have obtained 
numerical solutions for the linearized case h < 1, from the leading edge to far 
downstream. (The problem for compressible flow past a hot flat plate a t  zero 
incidence has been treated by Illingworth 1958.) 

Lam & Rott (1960) noted that the downstream inner (Strokes) solution must be 
'incomplete ', since it is determined without recourse to upstream conditions, and 
hence a set of eigensolutions which decay exponentially fast in the streamwise 
direction must be present. One set of eigensolutions was found by Lam & Rott (1960) 
and Ackerberg & Phillips (1972), whose eigenfunctions were dominated by conditions 
a t  the wall, and whose decay rate decreases as the eigenvalue increases. Brown & 
Stewartson (1973a, 6) found an alternative set of asymptotic eigensolutions, whose 
eigenfunctions were dominated by conditions a t  the outer reaches of the boundary 
layer, and whose exponential decay rate increases with increasing order. It does not 
appear that these two alternative descriptions of the flow have been fully reconciled 
as yet. 

The eigensolutions of Lam & Rott (1960) and Ackerberg & Phillips (1972) are 
proportional to exp (-h,(Qx*/U,)~), where A, is a complex constant, and so oscillate 
with a wavelength proportional to x*-i. At the same time the outer (Blasius) 
boundary-layer thickness must grow as x*i. Thus the streamwise scale of the 
unsteady component of the motion must ultimately become comparable with the 
boundary-layer thickness ; as a result cross-stream pressure fluctuations, neglected in 
the boundary layer approximation must become important for sufficiently large x*. 
These eigensolutions will then no longer be a valid approximation to the 
Navier-Stokes equations. This aspect was considered by Goldstein (1983), who 
showed that for x* = OIUw c2/Q], (i.e. much further downstream than the unsteady 
boundary-layer zone), the (perturbation) flow becomes governed by the Orr- 
Sommerfeld equation, involving Tollmien-Schlichting waves which initially decay, 
but then ultimately grow for sufficiently large x*. Goldstein (1983) showed that an 
overlap region exists between the boundary-layer region and the Orr-Sommerfeld 
region, and illustrated how long-wavelength free-stream disturbances can trigger 
Tollmien-Schlichting waves of much shorter wavelength (related aspects of this 
problem have been considered by Murdock 1980 and Goldstein et al. 1983). 

The case of h = O(1) has also received attention in the asymptotic limits 
equivalent to close to  the leading edge (Moore 1951, 1957; Pedley 1972) and far from 
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the leading edge (Lin 1956; Gibson 1957 ; Pedley 1972). This particular problem is 
considered at all distances from the leading edge by the author in a forthcoming 
paper. 

A number of papers presenting triple-deck studies involving the effect of 
unsteadiness have been presented. For example Brown & Daniels (1975) and Brown 
& Cheng (1981) have considered the effects of unsteadiness on a trailing-edge flow. 
Duck (1978, 1981) investigated the effect of a small oscillating disturbance on an 
otherwise steady (incompressible) flow, the solution being obtained asymptotically in 
the limit of increasingly fast oscillations. A number of Russian authors (Zhuk & 
Ryzhov 1978; Terent’ev 1978, 1984; Ryzhov & Zhuk 1980; Bogdanova & Ryzhov 
1983), have considered a number of problems of this class, for the limit of 
diminishingly small distortion height (compared with the lower-deck thickness). In  
all these studies, purely time-periodic solutions were sought. More recently in Duck 
(1985a, hereinafter referred to as I), and Duck (1986) numerical studies of the 
incompressible and supersonic nonlinear flow over a small unsteady hump have been 
carried out (with scalings again based on triple-deck theory). In  the supersonic case 
it was found that above some critical height of distortion, a short-wavelength 
instability may be triggered (this being a nonlinear effect). The work of Smith & 
Bodonyi (1985) and Tutty & Cowley (1986) suggests that this effect is an inviscid, 
Rayleigh, short-wavelength instability phenomenon. For the incompressible case it 
was shown in I (and by Terent’ev 1985) that Tollmien-Schlichting waves were 
triggered by the motion (even in the linearized case of diminishingly small distortion 
height), and Duck (1986) suggested that these waves could themselves be subject to 
a secondary (large-wavenumber) instability through nonlinearity. As a result 
incompressible calculations of this class tend to be a good deal more difficult than 
their supersonic counterparts. Indeed, it has been shown by Smith (1979a, b)  that  the 
large-Reynolds-number limit of the neutral stability curve of the Blasius boundary 
layer (lower branch) can be described by means of a triple-deck structure. More 
recently Smith & Burggraf (1985), Smith (1986), Stewart & Smith (1987), and Smith 
& Stewart (1987) have considered various aspects of the evolution of Toll- 
mien-Schlichting waves, for increasingly high frequencies, based upon triple-deck 
theory. Taken together, these papers strongly suggest that triple-deck theory can 
provide a rational model for a description of the early stages of some boundary-layer 
transition processes. 

In  the studies cited above, the basic (i.e. undisturbed) flow was steady in all cases 
(typically the Blasius boundary layer). However in this paper the basic flow 
comprises a steady plus an oscillatory component. Although the oscillatory 
component is taken to be quite small in the free stream, scalings are chosen such that 
close to the surface of the plate the unsteady velocity component becomes 
comparable with the mean (steady) velocity component and unsteadiness is shown 
to have a profound effect on the flow when the surface of the plate is distorted. Here 
the distortion is taken to be steady, and the unsteady forcing is provided by the 
external flow. This is in contrast to I and Duck (1986) and a number of other papers 
cited above where the unsteadiness was applied through the distortion. (Here the 
distortion could perhaps be interpreted as a surface roughness on the plate.) 

The frequency of the free-stream velocity component is chosen to  be such that the 
corresponding Stokes-layer thickness is comparable with the thickness of the lower 
deck of the triple deck (as in I) ; this then provokes a resonance type of situation. 
Duck (1980, 1985b) and Cowley (1981, 1985) have considered analogous pulsatile 
channel flow problems, and these papers point to some possible interesting effects. 



262 P. W .  Duck: 
The primary motivation for tackling this problem lies in the important area of 

externally imposed acoustic excitation of boundary layers ; such a problem, also 
based on a triple-deck model has been considered by Goldstein (1985). However, 
Goldstein’s analysis was based on a double linearization process - first the amplitude 
of oscillation of the excitation was taken to be small, and then the distortion height 
was taken to be small, which then permitted progress to be made analytically. The 
present paper may be thought of as extending Goldstein’s analysis into a nonlinear 
regime. 

A further motivation for tackling the problem could be in modelling free-stream 
turbulence, with the velocity fluctuations being approximated by a cosinusoidal 
form ; however the technique to be described could be extended to treat much more 
general situations, where the velocity fluctuations are prescribed by (for example) a 
Fourier time series. 

Finally, throughout this paper reference will be made to locations ‘upstream’ and 
‘downstream’. In  the context of reversing flows, these two terms are not well 
defined; however here the free-stream flow (which does not reverse direction) is taken 
as a reference. 

2. Problem formulation 
In this section the scales of the appropriate physical parameters are chosen in 

order to obtain the maximum amount of physical interaction inside the lower deck. 
The full details of the scalings for the triple deck are now well known, and may be 
found in Smith (1973), for example. 

As in I, the frequency parameter is chosen to be such that the unsteady (Stokes’) 
layer is of thickness comparable with the lower deck, i.e. 

P o  = €PI (2.1) 

where P = O(1). This determines the magnitude of the lengthscale L to be 
O[(U,/sZ) &], this being the distance from the leading edge of the plate to the wall 
distortion. This corresponds to the ‘overlap region’ of figure 1 of Goldstein (1983), 
and is the same location of the wall disturbance as was considered by Goldstein 
(1985). Following I again, the height and length of the wall perturbation are taken 
to be of the same order as the thickness and length of the lower deck respectively; 
specifically the distortion is given by 

y = €5hP(X), x = x/e3  = (x*-L) /€3L,  (2.2) 

where h, lP(X)l and X are taken to be O( 1) quantities generally . The final parameter 
scaling is that of the amplitude of the velocity oscillation A ,  and this is chosen to  be 
O(E) by setting 

h = €y, y = O(1) (2.3) 

(in the case of supersonic flows the definition of y may also include an additional 
multiplicative constant reflecting density variations across the main deck). This 
ensures that the amplitude of oscillation of the fluid particles in the free stream is 
comparable with the length of the distortion (see also Duck 1985b). 

With these scalings, and distortions of the class (2.2), the flow takes on the well- 
known triple-deck structure (see, for example Stewartson 1969 and Stewartson & 
Williams 1969). The general layout of the problem is sketched in figure 1 .  The 
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Upper deck y = O(e3) 

Main deck y = O(e4) 

Lower deck y = O(2) 

FIGURE 1. Layout of the problem. 

problem reduces to the solution of the lower-deck problem wherein the velocity and 
pressure develop as 

u = eU(X, Y ,  t )  +O(e2), 

If the Prandtl transposition theorem is implemented, the problem reduces to 

1 
- U,+UUX+VU, = Uyy-Px ,  (2 .5 )  P2 

(2.6) u, + v, = 0, 

with U = V = O  on Y = O ,  

17-t Y + A ( X , t ) + h F ( X ) + y  cost as Y + m .  (2.7) 

It is assumed that the boundary layer returns to its undisturbed state as X + - 00, 
and so 

where U,(Y, t )  = Y+{b[I-e-(l+’) Y’~2p]eit+c.c.}, (2.9) 

where quantities have been scaled in such a way that U,, (Y-t  co) is unity. 
The problem is closed by a pressure (P(X,  t ) )  - displacement (A(X ,  t ) )  relationship, 

obtained by solving in the upper deck and matching with the main deck. In  the case 
of incompressible flows this is 

(2.10) 

whilst for supersonic flows 

(2.11) 
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Notice that the pressure comprises two components : a known component driving 

the free-stream velocity fluctuations, i.e. ( y X / b 2 )  sin t ; and an unknown component 
due to the presence of the wall distortion. 

In  general the solution of (2.5) and (2 .6)  must be obtained numerically (although 
in $4 it will be shown that some analytic progress is possible in the limit as p+O, 
providing a partial analytical check on the numerical results). In  particular a 
numerical scheme is required that will handle reversed flow quickly and simply, since 
the basic flow (2.9) itself will reverse a t  certain times in the cycle if y / P  > 1. I n  the 
following section such a scheme is described. 

3. Numerical method 
A numerical solution of (2 .5)-(2.8)  is now considered. In I and Duck (1986) the 

Fourier transform method of Burggraf & Duck (1982) was extended to unsteady 
flows. In  the present paper, the undisturbed flow comprises a uniform (steady) shear, 
together with an unsteady Stokes'-flow component; this is in contrast to these 
previous papers where the basic flow was a uniform shear. Further, analytic progress 
does not appear possible generally in the present problem, even for the linearized 
(h-tO) case (unlike in I), and so this too demands a fully numerical approach. 

The scheme to be used is similar to  that of I and Duck (1986) and so details will 
be kept to a minimum, whilst significant differences will be emphasized. 
Differentiating ( 2 . 5 )  with respect to Y gives 

1 
- 7 + urx+ V r y  = T Y Y ,  P2 

where r = U, represents the shear. The flow quantities are written 

7 = ro( Y ,  t )  +qx, Y ,  t ) ,  

U =  U,(Y, t )+O(X,Y, t ) ,  V =  V ( X , Y , t ) ,  

+ P ( X ,  t ) .  
yX sint p=-  

P2 

(3.2) 

Here subscript zero denotes undisturbed quantities; U, is defined by (2.9), and 

(3.3) 

Quantities with a tilde denote perturbation values; as h+O, these will be O(h) ,  but 
for h = O( 1) are themselves O( 1). 

Substitution of (3 .2)  into (3.1) yields 

1 
- ? + u, ?x +ray v-?yy = - (07, + V?,) 
P2 

(3.4) 

(since the undisturbed flow satisfies Stokes' equation). The condition (2.7) 
demands 

O + A ( X , ~ ) + ~ F ( X )  as Y+OO, (3.5) 
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and the relation between the pressure and the displacement function is writt>en 
symbolically as 

P = 2 { A ) ,  

where 2{ } denotes some linear operation. If h+O, the O(h) approximation to t,he 
perturbation quantities is obtained by setting E = 0. 

Taking the Fourier transform of (3.4) in the X direction yields 

1 
- ~ * + ~ ~ C U , ? * + T ~ ~  8*-f:, = -(Of,+Vf,)* 
p z t  

= R*, 
where an asterisk denotes transformed variables, for example 

m 

?*(k, Y ,  t )  = ?(X, Y ,  t )  e-ikxdX. s, 
(3.7) 

Previous experience wit,h this numerical technique suggests that  a compressed/ 
stretched grid in the Y-direction increases accuracy, and so a coordinate 
transformation 

y =f(r) (3.9) 

is made. It will be assumed that 0 < 7 < 1 as 0 < Y < co. Equation (3.7) then 

= E*.  (3.10) 

Equation (3.10) requires a knowledge of O* and 8*, and these are obtained as 

(3.11) 

follows : 

U * ( k  7, t )  = jh) ?*(k 71, t )  dg,, 

V * ( k  7,  t )  = -ik ff( ' i r)  p ( 7 1 ) ? * ( k .  gl> t )  dg, dgz. 

0 

(3.12) 

The Fourier transform of (3.6) is written symbolically as 

P* = A ( k ) A * ,  (3.13) 

where (for example) A ( k )  = -ik for supersonic flows, (3.14) 

and A ( k )  = ( k 2 ) i  for incompressible flows. (3.15) 

for incompressible flows. 
Combining the Fourier transforms of (3.5), (3.13) and the condition 

(3.16) 

(which arises from the momentum equation (2.5) evaluated on Y = 0 ) ,  results in a 
' solubility ' condition 

1 = ikA(k)  { [ r f ' ( g l )  7*(k ,  ql, t )  dg,] -hF*} (3.17) 

(as in I). The numerical scheme used in I was adopted, i.e. central differencing in 7 
(grid size AT), along with Crank-Nicolson marching in time (step size At)  and 

f '(7) 7)=0 0 7'1 
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trapezoidal quadrature to treat the integrals in (3.11), (3.12) and (3.17). The scheme 
is overall second-order accurate in AT and At .  Notice the useful property 

."*( - k ,  11, t )  = C.C. {."*(A?, 11, t ) } ,  (3.18) 

which halves the domain that needs to be considered in k-space. +K + 1 points in k -  
space were taken, from k = -kmax up to k = 0, in steps of dk. 

The ?*((I, 7, t )  were all set equal to  zero a t  all times for all 11. Although, for the limit 
h + 0, this is a valid procedure, for h = O( 1 )  this amounts to imposing a slightly faster 
decay rate on the solution as 1x1 + co than is strictly the case. However this was 
found to  contribute negligibly to the overall truncation error (as evidenced by 
comparing computations on grids of various A k ) .  The presence of the 70y P*-term on 
the left-hand side of (3.10) has important repercussions. This was absent in I and the 
difference approximation resulted in a tridiagonal system (plus one full row) a t  each 
( k ,  t)-station. The additional term in (3.10) destroys this structure. If trapezoidal 
quadrature is used to evaluate P* from (3.12), then (symbolically) 

j n  

8 * ( k ,  j A 7 ,  t )  = (AT)' C C an,m ?*(k ,  m A y ,  t )  (3.19) 

(where the an,m are constants). The resulting set of difference equations a t  each 
( k ,  t)-station is then almost lower triangular (lower triangular with an additional 
band just above the diagonal). Simple Gaussian elimination procedures are still 
suitable for this system. 

The overall technique was identical to that described in I (with the fast-Fourier 
transform of Cooley & Tukey 1965 being used in the nonlinear calculations to 
evaluate the right-hand side of (3.10)). Linearized results were obtained by setting 
A* = 0 in (3.10), and so required no iteration. For the transverse Y-transformation, 
as in I. 

n=O m=O 

(3.20) 

was chosen, and (3.10) was solved over the range 0 < 7 < 0.95, spanned by J 11- 
points, i.e. the transverse grid size A7 = 0.95/(J- 1 ) .  

The final point concerns the start-up procedure implemented. It was found that 
simply introducing the distortion into the undisturbed flow at  some initial time ( t  = 
t,, say), frequently caused the solution to 'ring', as might well be expected. Instead, 
a rather gentler start was given to the computation. This involved solving the quasi- 
steady form of (3.10) a t  t = t,, with the time-derivative term (l//l') .": omitted. At the 
next time step ( t , + A t ) ,  and subsequent time steps, the full equation (3.10) was 
solved, including the time-derivative term. This generally gave a very smooth start 
to the computation, as evidenced by comparing solutions a t  t = t, with those 
obtained exactly one cycle later a t  t = t, + 27~. 

4. Results 
Most computations were performed on a variety of numerical grids, which to a 

certain extent were chosen to match the particular distortion and set of physical 
parameters ; the various grids uses are detailed in table 1 .  Generally, perturbation 
quantities will be presented, and so for reference figure 2 shows the variation of the 
unperturbed wall shear with time for a number of values of y relevant to  the 
following results (p = 1 in all cases). 
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Grid 

I 
I1 
I11 
IV 
V 
VI  
VII  
VII I  
I X  
X 

K 
128 
128 
128 
64 

256 
128 
64 

128 
256 
256 

 ma, 
7.055 

14.1 10 
14.1 10 
7.111 
7.027 
7.055 
7.111 

14.1 10 
14.055 
28.110 

Ak 

0.11 
0.22 
0.22 
0.22 
0.055 
0.11 
0.22 
0.22 
0.11 
0.22 

J 
25 
25 
49 
25 
25 
49 
49 
25 
25 
25 

TABLE 1. Grid parameters for the spectral method 

At 

0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.0025 
0.005 
0.005 

I 
l 2  t 

I 

'"1 8 

v =  10 

-1oL 
FIGURE 2. Variation of wall shear with time for basic flow, p =  1 in all cases 

Since analytic treatment of the governing system does not seem to be possible for 
the general linearized (h+O)  case, numerical results of this class will also be 
presented; indeed it will be seen that even flows of this simplified type may exhibit 
certain interesting features. 

4.1. Linearized supersonic results 
The first problem considered pertains to the distortion 

1 F ( X )  = - 
1 +X2'  

i.e. 
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with an amplitude parameter y = 2.5 and a frequency parameter /3 = 1 .  The first set 
of results were obtained with a start-up time t ,  = -in, and were computed on grids 
I, 11,111, IV ,  VIII and IX. All the results to be displayed are invariant with grid (to 
within graphical accuracy), except where stated. Temporal variations of perturbation 
wall shear (fW) for this case are shown at four selected X-stations, namely X = 0, 2.5 
(in figure 3a) and X = 5, 10 (in figure 3b). 

The most striking feature of these distributions is the ‘spiking’ effect observed a t  
downstream locations. I n  particular a t  X = 5 and 10, throughout much of the cycle 
the perturbation shear is of small amplitude ; however, during certain periods of the 
cycle (the further downstream, the later the period) the wall shear (and indeed other 
physical quantities) suddenly grows in amplitude, oscillates and then decays away. 
This ‘spiking ’ behaviour, whilst moving downstream with time, appears (by 
comparing the X = 5 and 10 results) to decay in amplitude, although temporally 
these oscillations become increasingly rapid. There was no discernible spiking effect 
upstream. 

Figure 3 (c, d )  shows spatial distributions of perturbation wall shear a t  six selected 
times, deliberately chosen during the period of spiking as observed in figure 3 (a ,  b) ,  
and the corresponding perturbation pressure distributions are shown in figure 
3 ( e ,  f), These figures all confirm the downstream movement of the spikes, together 
with their ultimate decay and break-up downstream. Since the derivative of the 
displacement function is (minus) the pressure, the displacement function must also 
exhibit this behaviour. 

It is revealing to inspect the behaviour of the solution in spectral (k) space during 
these periods of spiking. Figure 3(g) shows the spectral distribution of Re{?:} a t  
t = 4.4242 and for comparison the distribution at  t = 1.0492 is shown on the same 
figure, a somewhat ‘quieter’ time during the cycle. (These distributions were 
obtained using grid I11 ; other grids gave indistinguishable results on the scale shown, 
except grids I and IV of course, which truncated the spectral solution just beyond 
k = - 7 but gave similar results up to the point of truncation.) Figure 3 ( h )  shows the 
spectral distributions at two later times, namely t = 6.3092 and 8.3092, obtained on 
grid 111, and are to be compared with figure 3 (i), the results obtained on grid I. These 
figures indicate that a t  these later times large-amplitude oscillations are present in 
the spectral solution on grid I, which are however very much dependent on A7 - a 
halving of this grid substantially reduces the amplitude of these oscillations. At the 
later time shown these oscillations have subsided considerably. The computation on 
grid VIII (not shown) revealed that a reduction in At had little effect on these 
oscillations. Interestingly, in spite of the difference in spectral solutions, the physical 
solutions a t  t = 6.3092 and 8.3092 obtained on grids I and 111 were graphically 
indistinguishable (see figure 3j) .  The control computation on grids 11, IV (and IV) 
a t  t = 6.3092 did, however, produce oscillations in the physical solutions, well 
upstream of the distortion (X = O ) ,  which travelled downstream, decaying in the 
process, and were not noticeable a t  X = 0. These oscillations were insignificant in the 
computations with smaller Ak (grids I, IX),  or smaller A7 (grid 111). Presumably, 
although the smaller- Ak results still possess oscillations in k-space, the effect is 
fortuitously self-cancelling. From the evidence above, in particular their demise in 
physical space with a refinement of the k- or 7-grids, these oscillations in physical 
quantities are likely to be spurious, caused through too coarse a numerical grid. 

The physical processes responsible for the spiking phenomenon found during 
periods of the cycle are of interest. Figures 3 ( k ) ,  3 (I) and 3 (m)  show the instantaneous 
streamline patterns a t  t = 3.1542, 3.5442 and 4.0592 respectively (these times 
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FIGURE 3(u-c). For caption see p. 273. 
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t 1 = 4.0592 

/I/ 
0.54%. - 

-6 -4 -2 0 
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- 

-1.5 

5.3092 

FIGURE 3 ( d - f ) .  For caption see p. 273. 
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(d 

t = 1.0492 
\ 

f l  

A 

k l  1 I ! 

-14 -12 -10 - 

b 

4.4242 J 

4 2.5 

2.0 

1.5 

1 .O 

0.5 

0 

-0.5 

- 1.0 

-1.5 

Re {i:/h) 

t = 6.3092 I 
~ l I I 8 . 3 r y  

,-- 
_.-a 

-14 -12 -10 -8  -6 - 4  -2  

- 0.5 

1 - 1 . 0  

-0.5 

1:::: 
FIGURE 3(g-i). For caption see p. 273. 
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O T  1 

I I I I I I I I I I *  

- 5  -4 -3 -2 - 1  0 1 2 3 4 5 
X 

1 

0 

0 
I I I I I I I I I I 

- 5  -4 - 3  -2 - 1  0 1 2 3 4 5 
A 
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FIGURE 3. (a ,  6) Temporal variation of perturbation wall shear a t  fixed locations (as indicated) ; 
(c, d )  distribution of perturbation wall shear; ( e ,  f )  distribution of perturbation pressure ; (g, h, i) 
spectral distribution of Re ( f : ) / h ;  (j) distribution of perturbation wall shear; ( k ,  I, m) instantaneous 
streamlines a t  t = 3.1542, 3.5442 and 4.0592 respectively. Supersonic linear case; y = 2.5, t ,  = in, 
/l = 1, profile (4.1), grid I11 (grid I for i ) .  

corresponding to those chosen in figures 3c,  3e) .  Since these are linearized results, 
here a height parameter of h = 1 is taken. (These streamlines were obtained by using 
a second-order interpolation routine in ( X ,  7)-space on the grid I11 results.) 

The most startling feature of the streamline pattern is the presence of so-called 
‘cats-eye’ eddies in the main body of the boundary layer (see for example Sobey 
1980, 1982, 1985).t Important physical processes are thus likely to be occurring away 
from the wall. Figures 3 (E-m) span the period of time during which the undisturbed 
flow reverses a t  the wall (for this particular choice of parameters reversal at the wall 
occurs a t  t z 3.5154), which seems to be a critical time for the flow. The region of 
reversed flow moves downstream and subsides as time progresses, and indeed 
coincides with the spiking effect observed in the wall shear the pressure distributions. 
One possible explanation of this effect is the onset of a Rayleigh (large-wavenumber) 
instability (cf. Smith & Bodonyi 1985; Tutty & Cowley 1986). Instabilities of this 
class are well known to be linked to inflexional-type velocity profiles, and the profile 
(2.9) has an infinite number of inflexion points a t  all times, for all values of y and 

Following Smith & Bodonyi (1985) and Tutty & Cowley (1986), large-wavenumber 
(Ilcl+ 00) instabilities may exist with temporal growth rates ci = O ( k ) .  (The former 
authors considered a streamwise lengthscale shorter than that of the triple deck, 
whilst the latter authors emphasized the triple-deck formulation ; however the two 
approaches do match.) The multiple scales analysis of these previous authors is 
applicable to the basic profile (2.9), and figure 4 shows the variation of ci with t (which 
appears as a parameter in this context) for the case y = 2.5, P = 1. These 
computations were performed using the method of Tutty & Cowley (1986), using a 
program kindly supplied by them. (Note that t,his distribution of ci(t) ,  and those 
shown later are completely independent of the distortion height or shape, and depend 

t The streamline patterns presented by Tutty & Cowley (1986) do not correspond to the actual 
streamlines, but rather to the values of the ‘Prandtl transformed’ streamlines; since the wall 
distortion is moving transversely in their case, the wall itself does not coincide with a 
streamline. 

P. 
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FIGURE 4. Growth rate for Rayleigh instability; y = 2.5,  p = 1 .  

only on the flow parameters y and p . )  Figure 4 indicates that  instabilities of the 
Rayleigh type can appear during the cycle, although the author was unable to find 
solutions a t  all times. Further, there does seem to be some correlation between the 
presence and growth of the spiking, and the existence of solutions to the Rayleigh 
problem (in fact the correlation is somewhat stronger with the integrated growth 
rate). 

Computing times for this problem were fairly lengthy - a computation using grid 
I took approximately 20 minutes on a CDC 7600 to advance 5 units in t .  
Computational times on other grids may be estimated using this figure as a basis, and 
noting that the largest component of the solution process for these linear examples 
is the Gaussian elimination process, which requires O(J2K)  operations (this is in 
contrast to I, where the solution of the tridiagonal system a t  each ( t ,  k)-station 
involved O ( J K )  operations). 

A final comment regarding this particular example concerns the choice of start-up 
process. This works very well in the current examples as evidenced by comparing 
quantities 27c apart in t in figures 3 ( a )  and 3 ( b )  (although the further downstream, the 
more time is necessary for periodicity to develop). 

The above example was repeated on grids I ,  11,111, IV, VIII, I X  and X, but with 
t, = 0, instead of -in. At early times all these computations produced results very 
close to the t ,  = -in results. However by t x 3.6 the spectral solution on grids I, I11 
and VIII had in all cases ceased to decay for lkl % 1.  In  the case of grid X (the grid 
with the largest k-range), this exhibited lkl 9 1 growth by t = 3.1. Varying AT and At 
had negligible effect. The distribution of Re(?:) (which is typical of all spectral 
distributions) a t  t = 4.38, obtained on grid I1 is shown in figure 5 .  The growth in the 
spectral solution for Ikl + 1 was mirrored in the physical solution by increasing- 
amplitude oscillations (both spatial and temporal) downstream of the distortion, 
which were grid sensitive. The results in figure 5 are well after the period of time 
during which the physical results may be considered reliable. 

It is curious that starting the same computation a t  a later time can cause such a 
profound difference to the solution, even though the solutions initially are so close. 
A possible explanation for this can be found from the discussion earlier of the large- 
wavenumber, Rayleigh instability. Figure 4 indicates that  Ikl + 1 disturbances 
exhibit growth (in the particular case of y = 2.5, /3 = 1) from t x 0.75 until t x 4.15. 
Outside this interval, such disturbances may decay. Consequently in the case of the 
t, = 0 computations large-wavenumber disturbances (in particular those caused by 
the start-up process) soon enter a period of growth, (after approximately 0.75 time 
units) whilst in the case of the t ,  = --arc computations, disturbances are not subject 
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FIGURE 5 .  Spectral distribution of Re{i:/h}. Details as for figure 3 except grid 11, t ,  = 0. 

to growth until approximately 2.32 units of time have elapsed. This could conceivably 
account for the discrepancy between the results for the two starting times. 

The use of a less extensive k-range (e.g. grid I), with t, = 0 actually sidesteps this 
problem, giving results that compare very favourably with the t, = -&t results at all 
times; however the use of this technique for overcoming the problem cannot be 
properly justified. 

The next example for which results are presented is the case y = 5, p = 1,  taking 
again the distortion profile (4.1). Results (obtained on grid 111), using a starting time 
t, = -an are shown in figure 6. Shortly after the latest time shown ( t  = 2.3742) the 
(physical) wall shear grew increasingly rapidly with t ,  especially around X = 1 (figure 
6 a )  ; the perturbation pressure distributions are shown in figure 6 ( b ) .  The 
corresponding distribution of Re {?:) with k is shown in figure 6 ( c ) ,  and this indicates 
a deterioration of decay of the spectral solution with k .  Taken together, the physical 
and spectral trends all point to a singularity developing in the solution, although the 
results after t = 2.3742 were deemed unreliable because of the poor decay of the 
spectral solution as Ikl --f 00. 

This calculation was checked using grids I, I1 and VIII. The solutions obtained on 
grids I and VII were indistinguishable from the grid-I11 results shown in figure 6;  the 
grid-I1 results did differ a t  t = 2.3742, owing to oscillations downstream of X = 1 .  
These effects may well be caused by the truncated k-range used by grid 11, which 
figure 5 ( c )  shows could be significant. 

The calculation was repeated on grids I, 11, I11 and IV, using t ,  = 0. The previous 
distributions (obtained using t, = --in) were confirmed to within the graphical 
accuracy of figure 6. In particular the suggestion that a singularity was developing 
sometime after t = 2.3742 was confirmed. 

A search was made for Ikl + 1 Rayleigh modes of instability for y = 5, /3 = 1,  and 
results for the growth rate ci are presented in figure 7 .  This reveals that unstable 
Rayleigh modes are present through much of the cycle, with the amplitude of the 
growth rate approximately double that obtained for y = 2.5 (figure 4). Indeed we 
expect more instability as y increases (as the velocity profile becomes more like a 
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FIGURE 7. Growth rate for Rayleigh instability; y = 5, p = 1. 

Stokes layer). Interestingly, for y = 5 ,  a small, secondary mode is also seen to occur, 
between t M 3.7 and t M 4.1. 

The increased growth rates, together with the increased period that Raleigh 
instability is present could well explain why in this case the solution seems to break 
down both for t ,  = -in and t, = 0. This is similar in some respects to the suggested 
breakdown in I, Duck (19853) and Tutty & Cowley (1986), which also seem to be 
linked to Ikl %- 1 growth. 

However, there is an important distinction between the present results and those 
of previous works in so far as here the singularity must be linear, whilst the previous 
cases mentioned above were all nonlinear examples (although in a similar nonlinear 
system, Brotherton-Ratcliffe & Smith 1987 have shown how the flow can break 
down in a basically linear manner). These results suggest no periodic solution exists 
for this particular configuration (within the restriction of the triple-deck model). 
Inspection of the streamlines for y = 5 (with a notional value of h = 1) prior to the 
apparent breakdown (not shown) again reveals a flow pattern similar to that found 
in figure 3 (k-m) including ' cats-eye ' eddies. 

As a final supersonic linearized example the Jternative distortion profile was 
taken, namely 

F ( X )  = e-W, (4.3) 

for which ~ * ( k )  = 2n;e-IC2. (4.4) 

The motivation in choosing this shape is to investigate if a more rapid decay of 
F*(k)  with k can delay (or even eradicate) some of the effects observed in the previous 
examples. This seems to  be the case, as illustrated in figure 8 where results for 
y = 10, p = 1 ,  t ,  = 0 are presented. These results were obtained with grid V and 
checked by computations on grids I, I1 and VI. There is no sign of the breakdown 
suggested in a number of the previous computations, and reasonable periodicity 
seems to have been established in t .  Figure 8 ( b )  shows the downstream movement of 
the spiking whilst figure 8 ( a )  indicates that a similar spiking behaviour is beginning 
to  occur upstream of the distortion (and moving upstream) ; the latter is found at 
t M 2.5, and the former at t M 4.5. It is to be expected that as y increases (provided 
periodic solutions exist) conditions upstream, close to the wall, will become 
progressively like the reflection of those downstream close to the wall, a t  a time n 
earlier/later. A further trend to be expected (and observed) is that  the speed these 
spikes propagate upstream/downstream increases as y increases. 

Figure 8 ( c )  shows the growth rates of Rayleigh mode instabilities throughout the 
cycle. Secondary modes are seen to be present during two time periods ; the primary 
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FIGURE 8. (a, b )  Temporal variation of perturbation wall shear at fixed X-locations (as indicated) ; 
supersonic linear case, y = 10, t ,  = 0, b = 1, profile (4.3), grid V. ( e )  Growth rate for Rayleigh 
instability; y = 10, /3 = 1. 

instability has split into two distinct distributions, presumably corresponding to 
upstream- and downstream-moving spikes. 

The following section considers solutions of the nonlinear supersonic problem. 

4.2. Nonlinear supersonic results 
The first set of results to be presented for this class is for the flow over profile (4.1), 
with y = 2.5, /? = 1 and h = 1 (a hump type of distortion). This example is the 
nonlinear counterpart of the first case considered in $4.1, and so direct comparison 
may be made to judge the effects of nonlinearity. 

Figures 9 ( a ,  6) show distributions of perturbation wall shear and pressure 
respectively, obtained using grid I1 and t ,  = 0. These results point to the likely 
development of some form of singularity, close to X = 2.5,  shortly after t = 3.255. 
Figure 9 (c)  shows the (spectral) distribution of Re [?$I a t  t = 2.63 and 3.225, and this 
indicates that the growth in certain regions of the physical 7", solution is mirrored in 
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‘3.255 

FIGURE 9(a ,b ) .  For caption see p. 281. 

spectral space by a growth in Ilc( % 1 modes. By comparison with the linear 
distributions of figure 3(g), nonlinearity is seen to enhance the growth of these 
modes, leading to an apparent singularity in the physical solution. The computation 
was abandoned after t = 3.255, owing to lack of adequate decay of the spectral 
solutions for llcl % 1. The calculation for this case was repeated using grids 111, IV and 
VIII ,  which substantiate the accuracy of the figures (although after t = 3.255 
discrepancies did become apparent). 

Because of the discrepancy between the t, = 0 and t, = -in linear solutions for this 
choice of y and p, a calculation was performed with t, = -in, on grid 11; this seemed 
to develop a singularity a t  the same time and location as the t, = 0 computations 
described above. 

Figure 9(d-f) shows the streamlines for this case (obtained on grid I11 with 
t ,  = 0). The ‘cats-eye’ pattern is again observed (just prior to the breakdown of the 
solution), which seems to induce the large streamwise pressure gradient which in turn 
causes the rapid growth in wall shear. Overall, nonlinearity hastens the onset of the 
llcl % 1 growth in this instance. 

Computations ofthis type were lengthy. Typically for this case, grid-I1 calculations 
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FIGURE 9 ( c , d ) .  For caption see facing page. 

X 

took approximately 40 minutes of CDC 7600 time to advance the solution one unit 
in t .  

Figure 10 ( a )  shows the distribution of perturbation wall shear for the case y = 2.5, 
p = 1, profile (4.1), with h = - 1 (a hollow type of distortion), obtained using grid I1 
with t ,  = 0. Again it appears that  a singularity is forming, mirrored by a rapid 
growth in the spectral variables for lkl >> 1. I n  this case, the growth was somewhat 
slower than the corresponding h = 1 example (although these effects seem to be 
occurring a t  about the same time in both cases, just prior to the time of reversal of 
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FIGVRE 9. ( a )  Distribution of perturbation wall shear; ( b )  distribution of perturbation pressure ; ( c )  
spectral distribution of Re (?,*) ; ( d - f )  instantaneous streamline pattern a t  t = 2.63, 3.155, 3.255 
respectively. Supersonic nonlinear case; y = 2.5, t, = 0, /3 = 1 ,  h = 1 ,  profile (4.1), (a-c) grid 11 
( d - f )  grid 111. 

the undisturbed flow a t  the wall), but further upstream ( X  x 1) in the case of a 
hollow distortion. The instantaneous streamline patterns a t  the three times shown in 
figure 9(a) are presented in figure l O ( b 4 ) .  Again, the apparent breakdown is 
proceeded by the formation of ‘cats-eye’ eddies, away from the surface. 

A computation was performed on the example y = 5, /3 = 1, profile (4.1) with 
h = 1 using t, = 0 and grid IV, corresponding to the second example considered in Q 2.1. 
Results are not presented for this case, since the apparent breakdown was very 
similar in nature to the corresponding linearized example, although a t  a slightly 
earlier time (shortly after t = 1.9) indicating again that nonlinearity enhances large- 
wavenumber mode growth (in this case). Further evidence of this was provided by 
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the example of y = 5 ,  P = 1, h = 1, and profile (4.3) using t, = 0 (results of which are 
also not presented here), which developed (kl % 1 growth (in much the same manner 
as observed in the previous examples) around t = 3, and mirrored by a rapid growth 
of a section of the physical wall shear. This is in contrast to the corresponding 
linearized example which attained temporal periodicity. 

To conclude this subsection the solution in the limit of increasingly fast oscilla- 
tions, i.e. /3-0, is developed and comparison will be made with numerical results. 
(The limit y+O is of course a trivial limit, corresponding to the steady solution.) 

The solution of (2 .5)  and (2.6) as /I+ 0, for Y = O(1) (guided by the results of Duck 
1978, 1980, 1981), develops as 

(4.5) 

(4.6) 

u = y cost + u p ( X ,  Y )  + O(P”), 

v = VF’(X,  Y )  + O(P”), 

where 

+ PI;“’(X) + O(P”), 
yX sin t p=-  

P2 (4.7) 

and lJF)+ Y + h F ( X ) + A g ’ ( X ) ,  
P f ’ ( X )  = - A f & ( X ) .  

(4.12) 

(4.13) 

Quantities with a superscript (s) refer to steady quantities, and these turn out to be 
identical to the steady ( y  = 0) solution. In  deriving the above, the no-slip condition 
on Y = 0 has been relaxed on the unsteady component of the flow. However this is 
resolved by introducing a thin (Stokes) layer, wherein F = Y / p  = O ( l ) ,  and 

u = up( F, t )  +PU$j(X,  0) F + O(P”), 

v = O(p”). 
U p )  is the Stokes solution, viz. 

(4.14) 

(4.15) 

up) = h[i- e-(i+i) p/d21 .it + c.c. (4.16) 

The implication of this is that the perturbation quantities, as computed in the 
numerical scheme, i ( X ,  Y ,  t )  and P ( X ,  t )  should approach U t J ( X ,  Y )  and Pr ’ (X)  
respectively, as p + 0. 

Figure 11 ( a )  shows the temporal variation of the wall shear ?,(X = 0, t )  for the 
case y = 0.5, h = 1, profile (4.1), for both P = 0.5 and 0.25; t,he steady value is also 
indicated on the figure (all results were obtained on grid I). There was no sign of any 
breakdown (observed in a number of the previous computations). There is a clear 
indication of the solution approaching the steady value as P --t 0. Further evidence of 
this trend is provided by figure 11 (b ) ,  comparing the spatial distributions of +w at  
t = 6.1 for the above two values o f p ,  with the steady distribution. 

4.3. Linearized incompressible results 
From I it is to  be expected that accurate incompressible calculations are a good deal 
more difficult to produce numerically than their supersonic counterparts, owing to 

10 FILM 197 
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the presence of the Tollmien-Schlichting mode of instability. Indeed, it was found in 
I that the operation of starting the motion triggered unstable Tollmien-Schlichting 
modes, and caused a growing wave packet to be transmitted downstream. These 
instabilities revealed themselves numerically as increasingly large-amplitude oscil- 
lations in spectral space (with the largest growth rate a t  a finite value of k). These 
oscillations in turn eventually caused the breakdown of the solution (although in the 
linearized case this could be controlled by reducing A k ) .  

In  the prcsent study involving pulsatile boundary layers, it is to be expected that 
growing Tollmien-Schlichting instabilities will always be present, even in fully 
developed, time-periodic solutions, however small y ,  because the unsteady nature 
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FIGURE 12. ( a ,  b )  Distribution of perturbation wall shear; incompressible, linear case, y = 0.5, 
t ,  = 0, /j’ = 1, profile (4.1), grid V. 

of the main flow causes a cascade process, triggering all time modes, most of which will 
be unstable. 

The first example here is the flow over distortion profile (4.1), with y = 0.5, 
p = 1. Perturbation wall shear distributions obtained on grid V (with t ,  = 0) are shown 
in figure 12 ( a ,  b) .  This figure indicates that Tollmien-Schlichting waves are being 
formed which grow downstream. However after t M 6, over the range of X shown, 
this process stops, and no waves are generated. Unfortunately this calculation 
became unreliable (in the manner found in I and described above) after t z 8 (a 
control computation on grid I became unreliable a t  t M 5 ) .  Repeating the same 
calculation but with t, = -in confirmed the distributions shown in figure 12 to within 
the resolution of the figure, eliminating the possibility that these waves are a 
transient phenomenon. Indeed, this correlation between the results for t, = 0 and 

10.2 
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FIGIJRE i3 .  (u, b )  Temporal variation of perturbation wall shear; incompressible linear case, 
y = 0.5, t ,  = 0, ,!? = 1, profile (4.3), grid I. 

t, = - 2. vindicates the use of the start-up procedure in this case. It is not completely 
clear why growing Tollmien-Schlichting waves are not excited throughout the entire 
cycle. A possible explanation is that their growth is enhanced in the presence of an 
adverse pressure gradient/deceleration of the free-stream flow (see for example Gad- 
el-Hak et al. 1984), and this occurs for --. < t < 0, 7~ < t < 2n, etc. 

The second example of this linearized incompressible type is y = 0.5, /3 = I ,  with 
profile (4.3).  Temporal variations of perturbation wall shear a t  five selected X- 
locations are shown in figure 13 ( a ,  b),  obtained on grid I with t, = 0. The rapid decay 
of F*(k)  with k postpones the difficulties associated with the triggering of unstable 
Tollmien-Schlichting waves since all modes are effectively weighted by a factor e-I6' 
in spectral space. This particular computation remained reliable until just after 
t = 14, after which large spurious oscillations started to occur in the physical solution. 
A control computation on grid I remained reliable until just after t = 10; however, 
up to this time the results on this coarser grid agreed to  within the graphical accuracy 
of the results in figure 13. Figure 13(b), particularly, suggests that the 
Tollmien-Schlichting waves are growing in amplitude as they travel downstream, in 
line with the earlier comments. As with the previous example it does not appear that 
growing Tollmien-Schlichting waves are being formed continuously, but rather their 
manufacture is confined to certain periods throughout the cycle. Indeed, these results 
add some credence to the suggestions above concerning the link between adverse 
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FIGURE 14(a,b). For caption see next page. 

pressure gradients and the manufacture of Tollmien-Schlichting waves. A further 
control computation was performed, using grid I and commencing at t =in (to 
check on the effects of transient terms), and this confirmed these conclusions. 

The final linearized incompressible example considered here is for the above case, 
with a larger amplitude parameter, namely y = 2.5 (/I = 1, still). Figure 14(a)  shows 
perturbation wall shear distributions, obtained on grid I, with a starting time 
t, = 0. These show Tollmien-Schlichting waves forming rapidly and growing with 
travel downstream. Eventually the solution began to exhibit (spurious) upstream 
oscillations, mirrored in spectral space by the extremely large-amplitude oscillations 
of the transformed solution. The computation was repeated with t ,  = -in and the 
results shown in figure 14(a)  were confirmed (to within the resolution of the figure), 
indicating that the distributions were independent of the start-up process employed, 
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FIGURE 14. ( a )  Distribution of perturbation wall shear; ( b ,  e )  instantaneous streamline pattern at  
t = 3.005, 3.505 respectively. Incompressible linear case, y = 2.5,  t ,  = 0, /3 = 1, profile (4.3), 
grid I. 

although all computations had to be abandoned (owing to the difficulties with 
spurious oscillations) before one cycle had been completed. 

The streamline patterns corresponding to this example (with a notional height 
parameter h = 1) are shown in figures 14(b)  and 14(c) ,  a t  t = 3.005 and 3.505 
respectively. The flow is seen to become increasingly complex, and intensifying away 
from the surface as the Tollmien-Schlichting waves grow in magnitude and develop. 
The position of the closed eddies is seen to be approximately in phase with the 
Tollmien-Schlichting waveform. 

These results clearly reveal an increase in the growth rate of the Tollmien- 
Schlichting instability as the amplitude of the oscillatory flow increases; this is 
accompanied by increasing difficulty in obtaining accurate numerical solutions a t  
large times after the initiation of the computation. 

4.4. Nonlinear incompressible results 
Just  one example of this class is presented, namely the nonlinear version of the 
second case considered in $4.3, (profile (4.3) with h = /3 = 1 ,  y = 0.5 and t, = 0). This 
profile was chosen in preference to (4.1) because of its more favourable computational 
characteristics as outlined above. This example also provides a direct means of 
judging the effects of nonlinearity. Results for perturbation wall shear variations 
with t are shown in figure 15(a, b)  (obtained using grid I), and may be compared 
directly with figure 13 (a,  b) .  Up to X = 5 ,  the nonlinearity has little effect. However 
further downstream (see figure 15b and compare with figure 13b) ,  nonlinearity is 
tending to increase the magnitude of the waves, this effect apparently becoming 
more pronounced further downstream. As such, nonlinearity can be considered to 
play a destabilizing role, in line with the general conclusions concerning the effects 
of nonlinearity on the incompressible cases considered in I. 

This particular calculation was abandoned shortly after t = 6.5 because of doubts 
about the accuracy. At this stage, in addition to the increasingly large and rapid 
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FIGURE 15. (u, b) Temporal variation of perturbation wall shear, incompressible nonlinear case y 
= 0.5, t, = 0, h = 1, /I = 1 ,  profile (4.3), grid I. 

oscillations in the spectral solution a t  finite k (corresponding to the Tollmien- 
Schlichting instability, which were also encountered in the corresponding 
linearized results), the llcl 9 1 spectral solution had ceased to decay adequately. This 
difficulty was not found in the analogous linearized computation and is thus a feature 
of the nonlinearity. The most likely cause of this effect (and here the study of Duck 
1986 serves as a guide) is the Tollmien-Schlichting waves, in particular whose caused 
by the start-up process, themselves being subject to a secondary instability some 
distance downstream. 

5. General discussion and further comments 
It appears that these results illustrate two forms of instability, namely Raleigh 

and Tollmien-Schlichting type, the latter only being present in incompressible flows 
of this class. 

It is now well known (Smith 1979a, b )  that the lower branch of the neutral stability 
curve for the Blasius boundary layer in the limit of infinite Reynolds number can be 
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described by triple-deck theory, and there is increasing evidence that the triple- 
deck model can provide the basis for investigating further stages of certain transition 
processes (Smith & Burggraf 1985; Smith 1986; Smith & Stewart 1987; Stewart & 
Smith 1987). Indeed, the nonlinear incompressible results presented in $4.4 (together 
with I and Duck 1986) indicate a rapid growth of the spectral solution for large 
wavenumbers, suggesting the development of a second stage ~ possibly involving the 
Tollmien-Schlichting waves being subject to a Rayleigh-type instability. Further, 
there is increasing evidence that all the four main types of instability - Tollmien- 
Schlichting waves, Kelvin-Helmholtz waves, Gortler vortices and Rayleigh 
waves ~ are inter-related and may evolve from one class to another (Smith 1985). 

In the case of the supersonic results, the Tollmien-Schlichting mode of instability 
is probably not present in the results shown here. The nature of the mechanisms tha t  
cause the ‘spiking’ effect observed in some cases, and the apparent breakdown in 
others, seems to be associated with a large-wavenumber instability, as borne out by 
the testing for Rayleigh instabilities. Certain of the examples illustrate the possibility 
of a small perturbation exciting a rapidly growing Rayleigh instability, although it 
is not possible to be completely categorical on this point, since Rayleigh modes of 
instability may be present, and yet breakdown need not necessarily occur. Related 
to this i t  seems difficult to predict a priori whether a computation will develop an 
apparent singularity. This may be related to difficulties found in the study (both 
theoretical and experimental) of the instability of Stokes layers, which have received 
a good deal of attention in the past. 

Von Kerczek & Davis (1974) studied the flow above an oscillatory plate (with an 
imposed stationary boundary above), and using Floquet theory could find no 
unstable disturbances. Hall (1978) relaxed the requirement of the upper boundary, 
but again could find only stable flows. Oscillatory flow through circular pipes has also 
been studied  by Yang & Yih (1977) (only decaying disturbances found) and 
Pelissier (1979) (growing disturbances found, but results are of uncertain accuracy). 

These (and other) theoretical results do not appear to be in agreement with 
experimental evidence involving turbulent bursts ; for example Li (1954) (channel 
with oscillatory base) ; Sergeev (1966), Hino, Sawamoto & Takasu (1976), Iguchi, 
Ohmi & Megawa (1980), Ohmi et al. (1982), Merkli & Thomann (1975), Clarion & 
Pelissier (1975), (oscillatory flows through pipes). For pulsatile flows, which involve 
Stokes layers close to the boundaries (a situation similar to the present study), 
Nerem, Seed & Wood (1972) have recorded turbulent bursts in the canine aorta. 

It has been suggested that in Stokes layers where disturbances are subject to a net 
decay over a full cycle, disturbances can grow significantly over part, if not all of the 
cycle. This type of argument has been used as a basis for a number of studies by, for 
example, Rosenblat (1968), Rosenblat & Herbert (1970), Davis & Rosenblat (1972), 
Hall (1983) and Cowley (1987). This appears to the situation in the present study, 
where it has been demonstrated that lkl % 1 instabilities can exist over part of the 
cycle. At the same time, there is some qualitative correlation between these results 
and those relating to the stability of shear layers (Betchov 1960; Greenspan & 
Benney 1963). Indeed, inflexion points were shown to be important in these studies, 
just as in the case of Rayleigh instability (the profile in the present study has an 
infinite number of inflexion points a t  all times). 

In the present study, nonlinearity seems generally to enhance the growth of 
llcl % 1 modes. and of the associated singularity. Further progress in describing this 
important process requires a thorough understanding of the positive identification of 
the singularity (a possible candidate for the structure could be an extension of that 
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proposed by Brotherton-Ratcliffe & Smith 1987). This is likely to be a difficult task, 
owing to the requirements for more extensive (and finer) numerical grids as the 
critical time is approached. However, the spectral method, as used here, has 
significant advantages in problems of this type over more conventional (i.e. fully 
finite-difference) methods, and work is underway using this technique to study more 
fully this aspect of the solution. The occurrence of a singularity of the solution here 
could lead to some important consequences for the flow, involving possibly a sudden 
burst of vorticity into the bulk of the fluid. Further, three-dimensional effects will 
undoubtedly become important, and must ultimately be incorporated into any 
studies of this process. 

This work was partially supported by NATO Grant 523/82. The author wishes to 
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